Robust Depth Estimation from Auto Bracketed Images

نویسندگان

  • Sunghoon Im
  • Hae-Gon Jeon
  • In So Kweon
چکیده

As demand for advanced photographic applications on hand-held devices grows, these electronics require the capture of high quality depth. However, under low-light conditions, most devices still suffer from low imaging quality and inaccurate depth acquisition. To address the problem, we present a robust depth estimation method from a short burst shot with varied intensity (i.e., Auto Bracketing) or strong noise (i.e., High ISO). We introduce a geometric transformation between flow and depth tailored for burst images, enabling our learning-based multi-view stereo matching to be performed effectively. We then describe our depth estimation pipeline that incorporates the geometric transformation into our residual-flow network. It allows our framework to produce an accurate depth map even with a bracketed image sequence. We demonstrate that our method outperforms state-of-the-art methods for various datasets captured by a smartphone and a DSLR camera. Moreover, we show that the estimated depth is applicable for image quality enhancement and photographic editing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Camera Pose Estimation in Unknown Environments using a Sequence of Wide-Baseline Monocular Images

In this paper, a feature-based technique for the camera pose estimation in a sequence of wide-baseline images has been proposed. Camera pose estimation is an important issue in many computer vision and robotics applications, such as, augmented reality and visual SLAM. The proposed method can track captured images taken by hand-held camera in room-sized workspaces with maximum scene depth of 3-4...

متن کامل

Multi-modal Auto-Encoders as Joint Estimators for Robotics Scene Understanding

We explore the capabilities of Auto-Encoders to fuse the information available from cameras and depth sensors, and to reconstruct missing data, for scene understanding tasks. In particular we consider three input modalities: RGB images; depth images; and semantic label information. We seek to generate complete scene segmentations and depth maps, given images and partial and/or noisy depth and s...

متن کامل

Iterative Feedback Estimation of Depth and Radiance from Defocused Images

This paper presents a novel iterative feedback framework for simultaneous estimation of depth map and All-In-Focus (AIF) image, which benefits each other in each stage to obtain final convergence: For the recovery of AIF image, sparse prior of natural image is incorporated to ensure high quality defocus removal even under inaccurate depth estimation. In depth estimation step, we feed back the c...

متن کامل

Stereo Vision Auto-Alignment And The Unsupervised Search For Objects Of Interest With Depth Estimation

Stereo vision is fast becoming a highly investigated area in the domain of image processing. Depth information may be obtained from stereo or multi-vision images for reconstructing objects in 3D based on 2D information. Robotic applications make use of stereo vision for navigation purposes, locking down targets, as well as simulating human-like behaviour. This paper presents an algorithm for th...

متن کامل

Sensor-Based Auto-Focusing System Using Multi-Scale Feature Extraction and Phase Correlation Matching

This paper presents a novel auto-focusing system based on a CMOS sensor containing pixels with different phases. Robust extraction of features in a severely defocused image is the fundamental problem of a phase-difference auto-focusing system. In order to solve this problem, a multi-resolution feature extraction algorithm is proposed. Given the extracted features, the proposed auto-focusing sys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018